Enter the following Swift code in a new Playground. Wait a bit for the Playground to compute. Then click on the QuickLook bubble to the right of the m[i] variable near the end of this Swift script to see a plot of the FFT results. Enjoy.
import Foundation
// import Accelerate
var str = "Hello, playground"
var str2 = "My First Swift FFT"
println("\(str2)")
var len = 32 // radix-2 FFT length must be a power of 2
var myArray1 = [Double](count: len, repeatedValue: 0.0) // for Real Component
var myArray2 = [Double](count: len, repeatedValue: 0.0) // for Imaginary
var f0 = 3.0 // test input frequency
func myFill1 (inout a : [Double], inout b: [Double], n: Int, f0: Double) -> () {
for i in 0 ..< n {
// some test data
let x = cos(2.0 * M_PI * Double(i) * f0 / Double(n))
myArray1[i] = Double(x) // Quicklook here to see a plot of the input waveform
myArray2[i] = 0.0
//
}
println("length = \(n)")
}
var sinTab = [Double]()
// Canonical in-place decimation-in-time radix-2 FFT
func myFFT (inout u : [Double], inout v : [Double], n: Int, dir : Int) -> () {
var flag = dir // forward
if sinTab.count != n { // build twiddle factor lookup table
while sinTab.count > n {
sinTab.removeLast()
}
sinTab = [Double](count: n, repeatedValue: 0.0)
for i in 0 ..< n {
let x = sin(2.0 * M_PI * Double(i) / Double(n))
sinTab[i] = x
}
println("sine table length = \(n)")
}
var m : Int = Int(log2(Double(n)))
for k in 0 ..< n {
// rem *** generate a bit reversed address vr k ***
var ki = k
var kr = 0
for i in 1...m { // =1 to m
kr = kr << 1 // ** left shift result kr by 1 bit
if ki % 2 == 1 { kr = kr + 1 }
ki = ki >> 1 // ** right shift temp ki by 1 bit
}
// rem *** swap data vr k to bit reversed address kr
if (kr > k) {
var tr = u[kr] ; u[kr] = u[k] ; u[k] = tr
var ti = v[kr] ; v[kr] = v[k] ; v[k] = ti
}
}
var istep = 2
while ( istep <= n ) { // rem *** layers 2,4,8,16, ... ,n ***
var is2 = istep / 2
var astep = n / istep
for km in 0 ..< is2 { // rem *** outer row loop ***
var a = km * astep // rem twiddle angle index
// var wr = cos(2.0 * M_PI * Double(km) / Double(istep))
// var wi = sin(2.0 * M_PI * Double(km) / Double(istep))
var wr = sinTab[a+(n/4)] // rem get sin from table lookup
var wi = sinTab[a] // rem pos for fft , neg for ifft
if (flag == -1) { wi = -wi }
for var ki = 0; ki <= (n - istep) ; ki += istep { // rem *** inner column loop ***
var i = km + ki
var j = (is2) + i
var tr = wr * u[j] - wi * v[j] // rem ** butterfly complex multiply **
var ti = wr * v[j] + wi * u[j] // rem ** using a temp variable **
var qr = u[i]
var qi = v[i]
u[j] = qr - tr
v[j] = qi - ti
u[i] = qr + tr
v[i] = qi + ti
} // next ki
} // next km
istep = istep * 2
}
var a = 1.0 / Double(n)
for i in 0 ..< n {
u[i] = u[i] * a
v[i] = v[i] * a
}
}
// compute magnitude vector
func myMag (u : [Double], v : [Double], n: Int) -> [Double] {
var m = [Double](count: n, repeatedValue: 0.0)
for i in 0 ..< n {
m[i] = sqrt(u[i]*u[i]+v[i]*v[i]) // Quicklook here to see a plot of the results
}
return(m)
}
myFill1(&myArray1, &myArray2, len, f0)
myFFT( &myArray1, &myArray2, len, 1)
var mm = myMag(myArray1, myArray2, len)
// Feel free to treat the above code as if it were under an MIT style Open Source license.
// rhn 2014-June-08
// modified 2014-Jul-10 for Xcode6-beta3 newer Swift syntax